Energy Balance, Myostatin, and GILZ: Factors Regulating Adipocyte Differentiation in Belly and Bone
نویسندگان
چکیده
Peroxisome proliferator-activated receptor gamma (PPAR-gamma) belongs to the nuclear hormone receptor subfamily of transcription factors. PPARs are expressed in key target tissues such as liver, fat, and muscle and thus they play a major role in the regulation of energy balance. Because of PPAR-gamma's role in energy balance, signals originating from the gut (e.g., GIP), fat (e.g., leptin), muscle (e.g., myostatin), or bone (e.g., GILZ) can in turn modulate PPAR expression and/or function. Of the two PPAR-gamma isoforms, PPAR-gamma2 is the key regulator of adipogenesis and also plays a role in bone development. Activation of this receptor favors adipocyte differentiation of mesenchymal stem cells, while inhibition of PPAR-gamma2 expression shifts the commitment towards the osteoblastogenic pathway. Clinically, activation of this receptor by antidiabetic agents of the thiazolidinedione class results in lower bone mass and increased fracture rates. We propose that inhibition of PPAR-gamma2 expression in mesenchymal stem cells by use of some of the hormones/factors mentioned above may be a useful therapeutic strategy to favor bone formation.
منابع مشابه
Regulation of brown adipocyte metabolism by myostatin/follistatin signaling
Obesity develops from perturbations of cellular bioenergetics, when energy uptake exceeds energy expenditure, and represents a major risk factor for the development of type 2 diabetes, dyslipidemia, cardiovascular disease, cancer, and other conditions. Brown adipose tissue (BAT) has long been known to dissipate energy as heat and contribute to energy expenditure, but its presence and physiologi...
متن کاملGlucocorticoid-Induced Leucine Zipper (GILZ) Antagonizes TNF-α Inhibition of Mesenchymal Stem Cell Osteogenic Differentiation
Tumor necrosis factor-alpha (TNF-α) is a potent proinflammatory cytokine that inhibits osteoblast differentiation while stimulating osteoclast differentiation and bone resorption. TNF-α activates MAP kinase pathway leading to inhibition of osterix (Osx) expression. TNF-α also induces the expression of E3 ubiquitin ligase protein Smurf1 and Smurf2 and promotes degradation of Runx2, another key t...
متن کاملUnderstanding adipocyte differentiation.
The adipocyte plays a critical role in energy balance. Adipose tissue growth involves an increase in adipocyte size and the formation of new adipocytes from precursor cells. For the last 20 years, the cellular and molecular mechanisms of adipocyte differentiation have been extensively studied using preadipocyte culture systems. Committed preadipocytes undergo growth arrest and subsequent termin...
متن کاملCell Fate and Differentiation of Bone Marrow Mesenchymal Stem Cells
Osteoblasts and bone marrow adipocytes originate from bone marrow mesenchymal stem cells (BMMSCs) and there appears to be a reciprocal relationship between adipogenesis and osteoblastogenesis. Alterations in the balance between adipogenesis and osteoblastogenesis in BMMSCs wherein adipogenesis is increased relative to osteoblastogenesis are associated with decreased bone quality and quantity. S...
متن کاملHow Vascular Endothelial Growth Factor-A (VEGF) Regulates Differentiation of Mesenchymal Stem Cells
Vascular endothelial growth factor A (VEGF), a key factor in angiogenesis, plays an essential role in skeletal development and postnatal homeostasis. VEGF serves as a survival factor for chondrocytes and couples the resorption of cartilage with bone formation during endochondral ossification. Recently, it has also been found to regulate the balance between osteoblast and adipocyte differentiati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PPAR Research
دوره 2007 شماره
صفحات -
تاریخ انتشار 2007